sexta-feira, 30 de abril de 2010

O problema do caixeiro viajante


"Suponha que um caixeiro viajante tenha de visitar n cidades diferentes, iniciando e encerrando sua viagem na primeira cidade. Suponha, também, que não importa a ordem com que as cidades são visitadas e que de cada uma delas pode-se ir diretamente a qualquer outra. O problema do caixeiro viajante consiste em descobrir a rota que torna mínima a viagem total. "


Exemplificando o caso n = 4: se tivermos quatro cidades A, B, C e D, uma rota que o caixeiro deve considerar poderia ser: saia de A e daí vá para B, dessa vá para C, e daí vá para D e então volte a A. Quais são as outras possibilidades ?
É muito fácil ver que existem seis rotas possíveis:

ABCDA
ABDCA
ACBDA
ACDBA
ADBCA
ADCBA

O problema do caixeiro é um clássico exemplo de problema de otimização combinatória. A primeira coisa que podemos pensar para resolver esse tipo de problema é reduzí-lo a um problema de enumeração: achamos todas as rotas possíveis e, usando um computador, calculamos o comprimento de cada uma delas e então vemos qual a menor. ( É claro que se acharmos todas as rotas estaremos contando-as, daí podermos dizer que estamos reduzindo o problema de otimização a um de enumeração ).

Para acharmos o número R( n ) de rotas para o caso de n cidades, basta fazer um raciocínio combinatório simples e clássico. Por exemplo, no caso de n = 4 cidades, a primeira e última posição são fixas, de modo que elas não afetam o cálculo; na segunda posição podemos colocar qualquer uma das 3 cidades restantes B, C e D, e uma vez escolhida uma delas, podemos colocar qualquer uma das 2 restantes na terceira posição; na quarta posição não teríamos nenhuma escolha, pois sobrou apenas uma cidade; consequentemente, o número de rotas é 3 x 2 x 1 = 6, resultado que tinhamos obtido antes contando diretamente a lista de rotas acima.De modo semelhante, para o caso de n cidades, como a primeira é fixa, o leitor não terá nenhuma dificuldade em ver que o número total de escolhas que podemos fazer é (n-1) x (n-2) x ... x 2 x 1.
De modo que, usando a notação de fatorial: R( n ) = ( n - 1 )!.
Assim que nossa estratêgia reducionista consiste em gerar cada uma dessas R( n ) = ( n - 1 )! rotas, calcular o comprimento total das viagens de cada rota e ver qual delas tem o menor comprimento total. Trabalho fácil para o computador, diria alguém. Bem, talvez não. Vejamos o porquê.

Suponhamos temos um muito veloz computador, capaz de fazer 1 bilhão de adições por segundo. Isso parece uma velocidade imensa, capaz de tudo. Com efeito, no caso de 20 cidades, o computador precisa apenas de 19 adições para dizer qual o comprimento de uma rota e então será capaz de calcular 10^9 / 19 = 53 milhões de rotas por segundo. Contudo, essa imensa velocidade é um nada frente à imensidão do número 19! de rotas que precisará examinar. Com efeito, acredite se puder, o valor de 19! é 121 645 100 408 832 000 ( ou , aproximadamente, 1.2 x 10^17 em notação científica ). Consequentemente, ele precisará de
1.2 x 10^17 / ( 53 milhões ) = 2.3 x 10^9 segundos


para completar sua tarefa, o que equivale a cerca de 73 anos . O problema é que a quantidade ( n - 1 )! cresce com uma velocidade alarmante, sendo que muito rapidamente o computador torna-se incapaz de executar o que lhe pedimos.
Constate isso mais claramente na tabela a seguir:

Observe que o aumento no valor do n provoca uma muito lenta diminuição na velocidade com que o computador calcula o tempo de cada rota ( ela diminui apenas de um sexto ao n aumentar de 5 para 25 ), mas provoca um imensamente grande aumento no tempo total de cálculo. Em outras palavras: a inviabilidade computacional é devida à presença da fatorial na medida do esforço computacional do método da redução.

Com efeito, se essa complexidade fosse expressa em termos de um polinómio em n o nosso computador seria perfeitamente capaz de suportar o aumento do n. Confira isso na seguinte tabela que corresponde a um esforço computacional polinomial R( n ) = n5:


Então o método reducionista não é prático ( a não ser para o caso de muito poucas cidades ), mas será que não pode-se inventar algum método prático ( por exemplo, envolvendo esforço polinomial na variável número de ) para resolver o problema do caixeiro?
Bem, apesar de inúmeros esforços, ainda não foi achado um tal método e começa-se a achar que o mesmo não existe.

A existência ou não de um método polinomial para resolver o problema do caixeiro viajante é um dos grandes problemas em aberto da Matemática na medida em que S. A. COOK ( 1971 ) e R. M. KARP ( 1972 )[foto ao lado] mostraram que uma grande quantidade de problemas importantes ( como é o caso de muitos tipos de problemas de otimização combinatória, o caso do problema da decifragem de senhas criptografadas com processos modernos como o DES, etc ) podem ser reduzidos, em tempo polinomial, ao problema do caixeiro. Consequentemente: se descobrirmos como resolver o problema do caixeiro em tempo polinomial ficaremos sendo capazes de resolver, também em tempo polinomial, uma grande quantidade de outros problemas matemáticos importantes; por outro lado, se um dia alguém provar que é impossível resolver o problema do caixeiro em tempo polinomial no número de cidades, também se terá estabelecido que uma grande quantidade de problemas importantes não tem solução prática.

Costuma-se resumir essas propriedades do problema do caixeiro dizendo que ele pertence à categoria dos problemas NP - completos.

Nenhum comentário: